The following information should be provided by the purchaser when making an inquiry or placing an order:

a) Reference to this standard;
b) Reference to any requirement for third party certification, name of the third party agency, and if applicable, the level of certification;
c) Reference to Annex A for optional supplemental requirements (SR) for Low-Temperature Testing, Proof Load Testing, and Data Book requirements.
d) Section numbers represented below are those of API 4F, 4th Edition Specifications.

<table>
<thead>
<tr>
<th>Units Specified:</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
</table>

Section 4: Product Specification Levels (PSL)
The level of material and process controls placed upon primary load-carrying components of covered equipment.

PSL 1 includes practices implemented by a broad spectrum of the industry.
PSL 2 includes all of PSL 1 plus additional requirements.

Section 5.2, 5.3, and 5.4 - API Nameplates Required

<table>
<thead>
<tr>
<th>Nameplate Required</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>API Derrick or Mast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Service Rig Mast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Substructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API Crown Block</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 6: Structural Safety Level (SSL)

<table>
<thead>
<tr>
<th>Life Safety</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>E1</td>
<td>U1</td>
<td>E1</td>
</tr>
<tr>
<td>Medium</td>
<td>U1</td>
<td>E2</td>
<td>U2</td>
</tr>
<tr>
<td>Low</td>
<td>U1</td>
<td>E2</td>
<td>E3</td>
</tr>
</tbody>
</table>

E = Expected Environmental Event (Choose Only One)
U = Unexpected Environmental Event (Choose Only One)
Each structure shall have two SSL’s, the first for the expected environmental event, and the second for the unexpected environmental event.
Note: SSL E1/U2, E1/U3, E2/U3 are unrealistic. Refer to Annex B.6 for detailed information.

Section 7: Design Loads

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Rated Static Hook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Rated Static Rod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Rated Static Rotary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Operating Rod Load required for Service Rig Masts per Table 7.2.

Section 8.1.1: Fatigue Design

Fatigue Design rarely governs in the design of Drilling Structures; Is Fatigue Design required by the purchaser? Yes No

Section 8.2: Special Operating Loads

Do any special operating loads in excess of Tables 7.1 or 7.2 exist as required by the purchaser? Yes No

If "Yes", list the special operating loads below:
Section 8.3.1.1: Onshore Wind Design Criteria
The design reference wind velocity for operating, erection, and transportation shall be specified by the purchaser.

Operating $V_{ref} =$ __________ knots
Erection $V_{ref} =$ __________ knots
Transportation $V_{ref} =$ __________ knots

Note: 1 knot = 1.15 miles per hour = 0.514 meters per second

The expected and unexpected storm wind data may be specified in one of the following manners:
1. Directly specified by the purchaser in knots; The expected wind velocity specified shall be a 3-second gust wind, in knots, measured at 10 m (33 ft) in open terrain with an associated wind return period of 50 years for the land regions where the rig will operate.

The unexpected wind velocity shall be not less than 75% of the expected wind velocity.

2. Specified by the required Structural Safety Level (SSL; refer to Section 6) and the various regions where the structures shall operate. The manufacturer shall determine the appropriate design wind speeds using data from a recognized standards or governmental meteorological agency for the regions of intended use. Example: ASCE/SEI 7-05 is used for data in the continental United States. Note that for some regions in the world, such meteorological data is not readily available and the purchaser and manufacturer should agree on appropriate design wind speeds.

Expected $V_{ref} =$ __________ knots
Unexpected $V_{ref} =$ __________ knots

Section 8.3.1.2: Offshore Wind Design Criteria
The design reference wind velocity for operating, erection, and transportation shall be specified by the purchaser.

Operating $V_{ref} =$ __________ knots
Erection $V_{ref} =$ __________ knots
Transportation $V_{ref} =$ __________ knots

Note: 1 knot = 1.15 miles per hour = 0.514 meters per second

The expected wind velocity specified shall be a 3-second gust wind, in knots, measured at 10 m (33 ft) in open water with an associated wind return period of 100 years for the location of where the rig will operate.

The unexpected wind velocity specified shall be a 3-second gust wind, in knots, measured at 10 m (33 ft) in open water with an associated wind return period of 100 years for the location of where the rig will operate.

The expected and unexpected storm wind data may be specified in one of the following manners:
1. Directly specified by the purchaser in knots.

2. Specified by the required Structural Safety Level (SSL; refer to Section 6) and the various regions where the structures shall operate. The manufacturer shall determine the appropriate design wind speeds using data from ISO 19901-1. For expected and unexpected offshore storms in the Gulf of Mexico, the wind velocity shall be taken from API Bull 2INT-MET. For any areas not covered by the specifications listed above, the reference wind velocity shall be taken from a recognized standards agency, a governmental meteorological agency, or a site specific study with ISO guidelines. Note that for some regions in the world, such meteorological data is not readily available and the purchaser and manufacturer should agree on appropriate design wind speeds.

Expected $V_{ref} =$ __________ knots
Unexpected $V_{ref} =$ __________ knots
Section 8.4: Dynamic Loads

Applicable dynamic load combinations shall be specified by purchaser for all types of offshore drilling structures. Two methods of input for offshore dynamics are currently used. The first is commonly specified in naval architecture terms and requires the data listed below:

Surge = __________ g
Sway = __________ g
Pitch = __________ degrees Period = __________ seconds
Roll = __________ degrees Period = __________ seconds
Heave = __________ g

Metacenter of Vessel = __________ m (ft)

A second method to provide data for offshore dynamics is to provide the accelerations:

Linear X Acceleration = __________ m/sec^2 (ft/sec^2)
Linear X Acceleration = __________ m/sec^2 (ft/sec^2)
Linear X Acceleration = __________ m/sec^2 (ft/sec^2)
Rotational X Acceleration = __________ rad/sec^2
Rotational X Acceleration = __________ rad/sec^2
Rotational X Acceleration = __________ rad/sec^2

Metacenter of Vessel = __________ m (ft)

Section 8.5: Earthquake Loads

Earthquake consideration is a special loading condition to be specified by the user. The purchaser is responsible to provide all design criteria for the seismic zone in which the drilling unit shall operate.

If the drilling unit is to be designed for earthquakes, the purchaser shall provide design data below.

Section 8.6: Ice Loads

Per API requirements, ice loading is a special loading condition to be specified by the purchaser/user.

If the drilling unit is to be designed for ice loading, the purchaser shall provide design data below.
Section 8.7: Erection Loads
Per API requirements, each drilling structure shall be designed for erection loads in combination with dead loads and erection wind. Any additional erection loads, wind, inertial, or other, shall be specified by purchaser.

If any additional erection loads exist, the purchaser shall provide design data below.

__
__
__
__
__

Section 8.8: Transportation Loads
Per API requirements, each drilling structure shall be designed for transportation loads in combination with dead loads and transportation environment wind. Any additional transportation loads, wind, inertial, or other, shall be specified by purchaser.

If any additional transportation loads exist, the purchaser shall provide design data below.

__
__
__
__
__

Section 8.9: Overturning and Sliding
Distribution of any foundation support reactions shall be limited to comply with allowable design loadings of the supporting structures foundations, if specified by the purchaser. Manufacturer shall include diagrams defining the maximum foundation support loads based on the factored lateral loads with rig instructions. For example, ground supported land drilling structures might be specified to be supported on rig mats with an appropriate limitation on the maximum allowable ground bearing pressure.

Does the drilling unit sit on an additional supporting structure not included in the fabricator’s scope of design? Yes No

If applicable, the purchaser shall provide data (all allowable loads and conditions, including allowable ground bearing pressure, for foundations) below.

__
__
__
__
Supplementary Requirements

Annex A.1 SR1 - Low-Temperature Testing
The purchaser and manufacturer shall agree on the minimum design temperature and required testing temperatures.

Minimum Design Temperature = __________ °C (°F)
Impact Test Result Requirements = __________ kN-m (ft-lbs)

Annex A.2 SR2 - Proof Load Testing
Equipment shall be load tested to a load agreed by the purchaser and manufacturer.

Proof Load Test = __________ kN (lbs)

Annex A.3 SR3 - Data Book
Does the purchaser require a data book per API 4F? Yes [] No []