Open-die-shaped Forgings for use in the Petroleum and Natural Gas Industry

API SPECIFICATION 20B
FIRST EDITION, XXX 201X

This draft is for committee balloting purposes only.

This document is not an API Standard; it is under consideration within an API technical committee but has not received all approvals required to become an API Standard. It shall not be reproduced or circulated or quoted, in whole or in part, outside of API committee activities except with the approval of the Chairman of the committee having jurisdiction and staff of the API Standards Dept. Copyright API. All rights reserved.
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API’s employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API’s employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Table of Contents

1. **Scope** ... 1
1.1 **Purpose** ... 1
1.2 **Applicability** ... 1
1.3 **Forging Specification Levels (FSL)** ... 1

2. **Normative References** ... 1

3. **Terms, Definitions, Acronyms, and Abbreviations** .. 2
3.1 **Terms and Definitions** ... 2
3.2 **Acronyms and Abbreviations** ... 4

4. **Qualification** .. 4
4.1 **General** .. 4
4.2 **Qualification Forging** ... 4
4.3 **Qualification Forging Evaluation** .. 6
4.3.1 **Visual Examination** .. 6
4.3.2 **Hardness Testing** ... 6
4.3.3 **Nondestructive Examination** .. 6
4.3.4 **Test Piece** ... 7
4.3.5 **Mechanical Testing** .. 8
4.3.6 **Chemical Analysis** ... 8
4.3.7 **Metallographic Examination – Applicable to FSL-3 and FSL-4 only** 8
4.3.8 **Acceptance of the Qualification Forging** .. 9
4.4 **Limits of Forging Qualifications** ... 9
4.4.1 **FSL-1** ... 9
4.4.2 **FSL-2** .. 9
4.4.3 **FSL-3** .. 10
4.4.4 **FSL-4** ... 10

5. **Records of Qualification** ... 10
5.1 **Production Forgings** ... 11
5.2 **Qualification of Procurement Sources for Starting Material** .. 11
5.3 **Material Specifications** ... 11
5.4 **Manufacturing Procedure Specification (MPS)** ... 12
5.4.1 **General Variables** .. 12
5.4.2 **Heat Treat Parameters** ... 12
5.5 **Forging Production** .. 13
5.5.1 **General** .. 13
5.5.2 **Mechanical and Material Testing** .. 13
5.6 **Inspection, Quality Control, Marking, and Documentation** .. 13
5.6.1 **Calibrations Systems** ... 13
5.6.2 **Furnace Calibration** .. 13
5.6.3 **Visual inspection** ... 13
5.6.4 **Nondestructive Examination (NDE)** ... 14
5.6.5 **Dimensional inspection** .. 14
5.7 **Repair Welding** ... 14
5.8 **Traceability** ... 14
5.9 **Record retention** .. 14
5.10 **Marking** .. 14
5.11 **Handling, Storage and Shipping** .. 15

Annex A (informative) API Monogram Program ... 16
1 Scope

1.1 Purpose

This API standard specifies requirements for the qualification and production of open die shaped forgings for use in API service components in the petroleum and natural gas industries when referenced by an applicable equipment standard or otherwise specified as a requirement for compliance.

1.2 Applicability

This API standard is applicable to equipment used in the oil and natural gas industries where service conditions warrant the use of individually shaped open die forgings, including rolled rings. Examples include pressure containing or load bearing components. Forged bar, rolled bar and forgings from which multiple parts are removed are beyond the scope of this specification.

1.3 Forging Specification Levels (FSL)

This API standard establishes requirements for four forging specification levels (FSL). These four FSL designations define different levels of forged product technical, quality and qualification requirements.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document applies (including any addenda/errata).

ASTM A370, Standard Test Methods and Definitions for Mechanical Testing of Steel Products

ASTM A388/A388M, Standard Practice for Ultrasonic Examination of Steel Forgings

ASTM A604, Standard Practice for Macroetch Testing of Consumable Electrode Remelted Steel Bars and Billets

ASTM E10, Standard Test Method for Brinell Hardness Test of Metallic Materials

ASTM E18, Standard Test Method for Rockwell Hardness Test of Metallic Materials

ASTM E45, Standard Test Method for Determining the Inclusion Content of Steel

ASTM E110, Standard Test Method for Indentation Hardness of Metallic Materials by Portable Hardness Testers

ASTM E112, Standard Test Method for Determining Average Grain Size

ASTM E165, Standard Practice for Liquid Penetrant Examination for General Industry

ASTM E381, Standard Method of Macroetch Testing Steel Bars, Billets, Blooms and Forgings

ASTM E428, Standard Practice for Fabrication and Control of Metal, Other than Aluminum, Reference Blocks Used in Ultrasonic Testing

ASTM E64, Standard Test Method for Dynamic Tear Testing of Metallic Materials
3 Terms, Definitions, Acronyms, and Abbreviations

For purposes of this standard, the following terms, definitions, and acronyms apply.

3.1 Terms and Definitions

3.1.1 acceptance criteria
Defined limits placed on characteristics of materials, processes, products, or services.

3.1.2 as-forged
The condition of a forging as it leaves the open die without any subsequent operations.

3.1.3 bloom/billet
A semi-finished hot rolled, forged or extruded product, with a square, rectangular or round cross section. Bloom and billet can be used interchangeably.

3.1.4 calibration
Comparison and adjustment to a standard of known accuracy.

3.1.5 crop/cropping
Removal of the end(s) of ingot, billet, or bloom that may contain primary pipe or other defects.

3.1.6 grain flow
Fiber-like lines appearing on polished and etched sections of forgings caused by orientation of the constituents of the metal in the direction of working during forging.

3.1.7 heat
Material originating from a final melt, or for remelted alloys, the material originating from a single remelted ingot.

3.1.8 heat treatment
Specified, timed sequence of controlled heating and cooling of materials for the purpose of changing physical or mechanical properties.

3.1.9 hot work ratio
forging reduction
A ratio measuring the change in the cross sectional area during each hot working operation.

EXAMPLE For other than upset forging, the hot work ratio for a single hot work operation can be calculated using the following relationship:
where

A_f is the final cross sectional area;

A_i is the initial cross sectional area.

For upset forging, the hot work ratio for a single hot work operation can be calculated using the following relationship:

$r_A : 1 = \frac{A_f}{A_i}$

where

A_f is the final cross sectional area;

A_i is the initial cross sectional area.

NOTE The total hot work reduction ratio is defined as the product of the individual reduction ratios achieved at each step in the hot work operation from ingot cross section to the final hot work cross section. The ingot cross section shall be the cross section of the ingot obtained after casting or the final remelt step and any ingot grinding or surface preparation prior to the hot working. When the cross-section of the starting material or forged part varies, the cross-section resulting in the lowest calculated hot work ratio shall be used.

3.1.10 inclusions
Particles of nonmetallic compounds of metals and impurity elements, such as oxides, sulfides, or silicates, that are present in ingots and are carried over in wrought products.

3.1.11 ingot
A cast product intended for subsequent remelting or hot working by rolling, forging or extrusion.

3.1.12 ladle refining
Practices used on molten steel in the ladle that are intended to remove impurities and undesirable chemical constituents from the molten metal.

3.1.13 melt practice
Type of process used to produce a heat of metal. Includes the use of equipment for melting and refining.

3.1.14 open-die forging
Process where the hot mechanical forming of metals between flat or shaped dies in which metal flow is not completely restricted.

NOTE 1 The open die forging process uses hammers and presses to shape individual metal parts, usually using repeated strokes and continuous manipulation. Multiple open-die forging operations can be combined to produce the required shape.
NOTE 2 The metal used in open die forging may be reheated several times during the forging process before the final product is achieved.

3.1.15 prolongation
An extension of metal added to a forging to permit removal and subsequent testing without destroying the forging. This extension is integrally made during the forging process.

3.1.16 rolled ring
Circular open die forgings produced on a ring mill.

3.1.17 starting material
The raw material used to produce a forging. Starting materials may include billets, ingots, blooms and blanks.

3.1.18 traceability
The ability to verify the history, location or application of an item by means of documented recorded identification.

3.1.19 wrought structure
A hot worked or forged structure that contains no cast dendritic elements.

3.2 Acronyms and Abbreviations

FSL forging specification level
MPS manufacturing procedure specification
NDE nondestructive examination
QTC qualification test coupon
UNS unified numbering system

4 Qualification

4.1 General

This standard gives the requirements for four forging specification levels (FSLs). The FSLs are numbered in increasing levels of severity from 1 to 4 in order to reflect increasing technical, quality and qualification criteria. The subparagraphs in Section 4 describe the conditions which, when met, allow the forging to receive the appropriate FSL classification level.

4.2 Qualification Forging

4.2.1 A qualification forging shall be produced, tested and evaluated by the forging supplier in order to establish qualification for a range of products listed in Table 2. Forgings shall be produced in accordance with a manufacturing procedure specification, as specified in 5.3. The material group of the qualification forging shall be in accordance with Table 1. Qualification forgings are to be in their completed forged form, with the addition of any specified rough machining and full heat treatment to establish the final mechanical properties required of the
finished product. Qualification forgings shall be produced in accordance with the requirements of Section 4, Section 5 and the forging supplier’s written specification that defines acceptance criteria.

4.2.2 A forging qualified to a specific FSL also qualifies lower FSLs (e.g. FSL-4 qualifies FSL-3, FSL-2 and FSL-1 forgings) within the limitations of Section 4.4.

4.2.3 Repair welding is prohibited on the qualification forging.

<table>
<thead>
<tr>
<th>Material Group</th>
<th>Description</th>
<th>Sub-Group</th>
<th>Typical Examples/Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbon, microalloyed steels</td>
<td>1A</td>
<td>Carbon steels (UNS G1xxxx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1B</td>
<td>Microalloyed (with small addition of V, Nb, Ti, Mo, Zr or B)</td>
</tr>
<tr>
<td>2</td>
<td>Low alloy steels</td>
<td>2A</td>
<td>Cr-Mo-low alloy steels (UNS G41xxx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2B</td>
<td>Ni-Cr-Mo medium carbon alloys (UNS G43xxx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2C</td>
<td>Cr-Ni-Mo low alloy steels (UNS G86xxx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2D</td>
<td>21/4Cr-1 o steel (ASTM A182/A336 Grade F22/UNS K21590), 9Cr-1Mo steel (ASTM A182 Grade F9/UNS K90941)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2E</td>
<td>ASTM A707 Grades (modified)</td>
</tr>
<tr>
<td>3</td>
<td>Austenitic, martensitic and martensitic precipitation-hardening stainless steels</td>
<td>3A</td>
<td>Austenitic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNS S31603, S30400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3B</td>
<td>Martensitic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>410 SS (UNS S41000), F6NM (UNS S41500, S42400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3C</td>
<td>Precipitation Hardening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17-4PH (UNS S17400), 15-5PH (UNS S15500)</td>
</tr>
<tr>
<td>4</td>
<td>Duplex and super duplex stainless steels</td>
<td>4A</td>
<td>Duplex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNS S31803, UNS S32205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4B</td>
<td>Super Duplex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNS S31260, S32750, S32760, S39277</td>
</tr>
<tr>
<td>5</td>
<td>Nickel based alloys</td>
<td>5A</td>
<td>Solution Annealed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNS N06625, N08825</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5B</td>
<td>Precipitation Hardening</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UNS N07718, N07725, N09925, N09935, N09945</td>
</tr>
</tbody>
</table>
Table 2 - As-forged Weight Range Classes (pounds)

<table>
<thead>
<tr>
<th>Weight Range</th>
<th>FSL-1</th>
<th>FSL-2</th>
<th>FSL-3</th>
<th>FSL-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2500</td>
<td>One qualification required</td>
<td>One qualification required</td>
<td>One qualification required</td>
<td>Weight not applicable for FSL-4. Each forging shall be individually qualified.</td>
</tr>
<tr>
<td>2500 ≤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000 <</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Qualification Forging Evaluation

4.3.1 Visual Examination

4.3.1.1 Visual inspection of the forging shall be performed in accordance with the forging supplier’s procedures for cracks, laps, seams and other anomalies. Results shall be documented and the material shall be dispositioned.

4.3.2 Hardness Testing

Brinell and/or Rockwell hardness testing shall be performed on the surfaces of the qualification forging in accordance with ASTM E10, ASTM E110 or ASTM E18 to ensure the forging is within the specified limits. Results shall be documented.

4.3.3 Nondestructive Examination

4.3.3.1 Surface Examination

4.3.3.1.1 Sampling

All accessible surfaces of each qualification forging shall be examined by liquid-penetrant (PT) or magnetic-particle (MT) methods after final heat treatment and any machining operations. Forgings may have to be rough machined or ground in order to facilitate surface NDE.

4.3.3.1.2 Test Method

All forgings shall be examined in accordance with procedures specified in ASTM E709 (MT) or ASTM E165 (PT). If any indications are believed to be non-relevant on the basis that they are not associated with a surface rupture (i.e. magnetic permeability variations, non-metallic stringers), they shall be examined by liquid penetrant surface NDE methods or removed and re-inspected, to confirm their non-relevancy.

4.3.3.1.3 Acceptance Criteria

The following acceptance criteria apply:

a) no relevant indication with a major dimension equal to or greater than 3/16 in. (5 mm);

b) no more than ten relevant indications in any continuous 6 in.² (40 cm²) area;
c) four or more relevant indications in a line separated by less than 1/16 in. (1.6 mm) (edge to edge) are unacceptable;

d) no relevant indication with a major dimension equal to or greater than 3/16 in. (5 mm);

e) no more than ten relevant indications in any continuous 6 in.\(^2\) (40 cm\(^2\)) area;

f) four or more relevant indications in a line separated by less than 1/16 in. (1.6 mm) (edge to edge) are unacceptable.

4.3.3.2 Volumetric Examination

4.3.3.2.1 Sampling

As far as practical, the entire volume of each qualification forging shall be ultrasonically examined after heat treatment for mechanical properties and prior to machining operations that limit effective interpretation of the results of the examination.

For quench-and-tempered products, the volumetric inspection shall be performed after heat treatment for mechanical properties exclusive of stress-relief treatments or re-tempering to reduce hardness.

4.3.3.2.2 Test Method

All forgings shall be examined by the ultrasonic method in accordance with the flat-bottom-hole procedures specified in ASTM A388/388M, except that the immersion method may be used, and ASTM E428.

The distance amplitude curve (DAC) shall be based on a 1/16 in. (1.6 mm) flat-bottom hole for metal thicknesses through 1 ½ in. (38 mm), on a 1/8 in. (3.2 mm) flat-bottom hole for metal thicknesses from 1 ½ in. (38 mm) through 6 in. (150 mm), and on a 1/4 in. (6.4 mm) flat-bottom hole for metal thicknesses exceeding 6 in. (150 mm).

4.3.3.2.3 Acceptance criteria

The following acceptance criteria apply:

a) no single indication exceeding reference distance amplitude curve;

b) no multiple indications exceeding 50 % of reference distance amplitude curve. Multiple indications are defined as two or more indications (each exceeding 50 % of the reference distance amplitude curve) within 1/2 in. (13 mm) of each other in any direction.

4.3.4 Test Piece

4.3.4.1 Based on the size and complexity of the forging, the qualification forging shall be evaluated using at least one of the following test pieces:

a) an integral prolongation, at a specified location;

b) a sacrificial forging;

c) a separately forged QTC representing the critical forged section is permitted for FSL 1 only.

4.3.4.2 When a prolongation is used, it shall remain integrally attached during all heat treatment operations except stress relief and any re-tempering or re-aging that may be required.
4.3.5 Mechanical Testing

4.3.5.1 Hardness testing shall be performed in accordance with ASTM E10, E110 or E18 on the cross section of the test piece, traversing the entire cross section in two perpendicular directions, with each traverse consisting of a minimum 5 points equally spaced across the cross section. Results shall be documented.

4.3.5.2 Tensile test specimens shall be removed from the sample and tested in accordance with ASTM A370 at the following locations:

a) at or near the surface of the forging but not deeper than 1 ¼ inch (31.75 mm);

b) at ¼ T of the thickest cross section (T is defined as the thickest cross section of the forging in the as heat treated condition);

c) at the location closest to the centerline of the heaviest cross section of the forging in the final heat treated condition.

In all locations, as geometry permits, specimens shall be removed in the longitudinal and transverse direction to the grain flow.

4.3.5.3 Charpy (CVN) impact specimens shall be removed from the ¼T and mid-section areas and tested in accordance with ASTM A370 at a temperature specified by the material specification. In all locations, as long as the geometry permits, specimens shall be removed in the longitudinal and transverse direction to the grain flow. Results shall be documented.

4.3.6 Chemical Analysis

4.3.6.1 The forging supplier shall specify the nominal chemical composition, including composition tolerances, of the material used for the qualification forging.

4.3.6.2 Material composition shall be determined on a heat basis (or on a remelt-ingot basis for remelt-grade materials) in accordance with a nationally or internationally recognized standard.

4.3.7 Metallographic Examination – Applicable to FSL-3 and FSL-4 only

4.3.7.1 General

4.3.7.1.1 A metallographic sample shall be removed from 2 locations, surface and 1/4T of the heaviest cross section of the prolongation or sacrificial forging.

4.3.7.1.2 For Group 1 and Group 2 materials, steel cleanliness shall be determined in accordance with ASTM E45, Method A, and shall be within the limits shown in Table 3. The results shall be documented.

Table 3 — ASTM E45 Method A Inclusion Rating Limits

<table>
<thead>
<tr>
<th>Inclusion Type</th>
<th>Thin</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A sulfide</td>
<td>2</td>
<td>1½</td>
</tr>
<tr>
<td>Type B alumina</td>
<td>2</td>
<td>1½</td>
</tr>
<tr>
<td>Type C silicate</td>
<td>2</td>
<td>1½</td>
</tr>
<tr>
<td>Type D globular oxide</td>
<td>1½</td>
<td>1½</td>
</tr>
</tbody>
</table>

© American Petroleum Institute

8
4.3.7.1.3 For Group 1 and Group 2 materials, grain size shall be determined in accordance with ASTM E112 at the 1/4T location. For carbon and low alloy steels the grain size shall be ASTM 5 or finer. For other materials the grain size shall be appropriate for the alloy. Photomicrographs of grain size shall be taken at 100X.

4.3.7.1.4 For Groups 3, 4 and 5, the microstructure shall be evaluated by techniques appropriate to characterize the alloy.

4.3.7.2 Macroetch

One full cross section sample shall be macroetched in accordance with ASTM A604 or ASTM E381, as applicable, to show the grain flow and internal structure. Acceptance criteria shall be in accordance with the forging supplier’s written procedure. Photographs shall be taken of the etched section demonstrating the structure and grain flow with accompanying linear scale.

4.3.8 Acceptance of the Qualification Forging

4.3.8.1 Results of the examinations specified in Section 4 shall comply with the acceptance criteria specified in the forging supplier’s MPS.

4.3.8.2 Samples failing to meet the acceptance criteria shall be cause for re-evaluation of the processes and procedures used. A revision of the MPS and requalification is required.

4.4 Limits of Forging Qualifications

<table>
<thead>
<tr>
<th>Table 4 — Variables of Forging Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Change in material group (Table 1)</td>
</tr>
<tr>
<td>Change in forging practice that results in lower hot work ratio.</td>
</tr>
<tr>
<td>Change in melting/refining practice used for the starting material.</td>
</tr>
<tr>
<td>Change in as forged weight class (Table 2)</td>
</tr>
<tr>
<td>Change from press/hammer to ring rolling</td>
</tr>
<tr>
<td>Increase in the minimum specified strength level above qualified</td>
</tr>
<tr>
<td>Change in basic type of forge equipment</td>
</tr>
<tr>
<td>Change in immediate post-forge thermal process on forgings</td>
</tr>
<tr>
<td>Change in subgroup of materials in Groups 1, 2, 3, 4, 5 (Table 1)</td>
</tr>
<tr>
<td>Change in actual melt source used for starting material</td>
</tr>
<tr>
<td>Change in specific material grade within a material subgroup (Table 1)</td>
</tr>
</tbody>
</table>

4.4.1 FSL-1

A change in material group as shown in Table 1 from the forging that was previously qualified requires requalification of the forging.

4.4.2 FSL-2

4.4.2.1 Qualification requirements specified for FSL-1 are required for FSL-2
4.4.2.2 A change to the forging practice resulting in a lower hot work ratio than that used to produce the qualification forging requires a requalification.

4.4.2.3 Any change in the final melting/refining process used to qualify the forging requires a requalification.

4.4.2.4 A change in the as-forged weight range class as shown in Table 2 from the forging that was previously qualified requires requalification of the forging.

4.4.2.5 A change from press or hammer equipment to a ring rolling process.

4.4.3 FSL-3

4.4.3.1 Qualification requirements specified for FSL-1 and FSL-2 are required for FSL-3.

4.4.3.2 An increase in the minimum specified strength level above the values qualified for a given material subgroup requires a requalification.

4.4.3.3 A change in the basic type of forge equipment used (mechanical, press, hammer, ring roller, etc.) from the forging that was previously qualified requires requalification of the forging.

4.4.3.4 A change in the immediate post-forging thermal process used from the forging that was previously qualified requires requalification of the forging.

4.4.3.5 Any change in the subgroup in material groups 1, 2, 3, 4 and 5 from Table 1 requires a requalification.

4.4.4 FSL-4

4.4.4.1 Qualification requirements specified for FSL-1, FSL-2 and FSL-3 are required for FSL-4.

4.4.4.2 A change in the actual melt source used to supply the starting material from the forging that was previously qualified requires requalification of the forging.

4.4.4.3 A change in specific material grade within a subgroup requires requalification of the forging (Ex. 4130 and 4140 require separate qualifications).

4.5 Records of Qualification

The following records are required to document the qualification of the forging.

a) Starting material, grade, UNS number, where applicable, heat number, material specification, supplier name, supplier mill, size, hot work ratio, cut weight, melt practice and ladle refinements, cleanliness, actual chemistry, minimum/maximum element tolerance, incoming material inspection/evaluation method, MPS revision level and qualification number.

b) Forging parameters: hot work temperature range, description of each forging operation including product configuration at start and finish of each operation and hot work ratio for each step, forge equipment used.

c) Post forging parameters: time, temperature, and media of cooling/bake-out, heat treatment specification and actual times and temperatures, cooling media, heat treatment equipment used.

d) Test records: records of the examination, mechanical testing, and metallographic evaluations as described in Section 4.
5 Production Forgings

5.1 Qualification of Procurement Sources for Starting Material

5.1.1 Only melt source facilities that are approved by the forging supplier shall be used to supply starting material such as billet or ingot material. The forging supplier shall have a documented procedure, fully implemented, for qualifying starting material suppliers for each specific size and grade of starting material. The approval process shall be based on both a quality assurance and a technical evaluation. The approval process shall establish the methodology by which the starting material supplier will be evaluated on an ongoing basis to maintain their status as an approved supplier.

5.1.2 The maintenance of an acceptable quality program, such as an ISO registration, is not sufficient by itself to satisfy the requirements of 5.1.1. Documented evidence that a starting material supplier has a historical and ongoing technical capability of producing materials meeting this standard and who has proven, implemented procedures and capabilities in place to consistently produce acceptable product is a minimum requirement. Options for the technical approval of a starting material supplier include one or more of the following.

a) Supplier experience over an extended period of time. Demonstration of acceptable experience shall include tests/inspections, quantity of material received, nonconformance analysis etc.

b) On-site technical audit at scheduled 3 year intervals. A new supplier shall be subject to an onsite technical audit, which includes the controls addressed in 5.1.3.

5.1.3 The forging supplier is responsible for ensuring that a starting material supplier has implemented controls addressing the following for each size and grade of starting material ordered:

— chemistry controls;
— hydrogen controls;
— melting practice controls;
— teeming practice and ingot mold controls;
— hot work practice controls (method of forging, amount of reduction, forging temperature, etc.);
— cooling rate and method controls;
— ingot/billet cropping controls;
— starting material inspection and acceptance criteria (cleanliness requirements, limitations on porosity or inclusions, grain size, secondary phases, microstructure, macrostructure, etc.) as applicable;
— material contamination controls (e.g. mercury, radioactivity).

5.2 Material Specifications

5.2.1 Starting material requirements shall be documented in the form of material specifications. Material specifications shall be developed by the forging supplier or the purchaser. Material specifications shall include as a minimum:

— material grade, including element chemistry ranges;
— melting practices and ladle refinements;
— acceptable forging reduction range, if applicable;
— acceptable cleanliness level range, as required by applicable FSL;
— acceptable inspection practices and criteria.

5.2.2 The forging supplier shall document acceptance of incoming starting material to the requirements of the material specification prior to use for production of forgings.

5.3 Manufacturing Procedure Specification (MPS)

The forging supplier shall prepare a manufacturing procedure specification (MPS) to include, as a minimum, the material specification and the general variables listed in 5.4.1 and the heat treat parameters listed in 5.4.2. As part of the MPS, the forging steps shall be shown detailing initial and final dimensions during forging for each step of the forging process. This will also include documentation of the heat or reheat temperature ranges required for each hot work reduction step in a drawing and written documents.

5.4 Process Control Variables

5.4.1 General Variables

The following are general process control variables for the production of qualified forgings:

— size of starting material, cut weight and tolerances;
— evaluation process used for incoming material and for determining cropped length of starting material;
— hydrogen flake-control method (bake-out, slow cool, etc.), if applicable;
— hot-working temperature range;
— overall hot work ratio from starting material;
— description of each forging operation, including general product configuration at the beginning and end of each different type of hot work or forging operation and hot-work ratio for each step;
— acceptable forging equipment for production;
— inspection requirements;
— NDE, if applicable.

5.4.2 Heat Treat Parameters

The following are heat treat parameters, as applicable:

— furnace loading diagram, orientation and spacing of production parts;
— heat treat times and temperatures for each processing cycle;
— forging configuration and dimensions at time of heat treatment;
— quenching medium and type of agitation (water/polymer, forced, horizontal; or vertical quench, ID/OD, etc.);
— quench medium start and finish temperature and transfer time to quench.

5.5 Forging Production

5.5.1 General

Forgings shall be produced by the open die or ring rolled forging process in accordance with the MPS specified in 5.3. The overall hot work ratio, as defined in 3.1.9, shall be sufficient to produce a wrought material structure throughout all sections of the forging. The overall hot-work ratio from starting stock to product shall be greater than or equal to that specified below for the applicable FSL.

a) FSL-1: 3:1
b) FSL-2: 3:1
c) FSL-3: 4:1
d) FSL-4: 4:1

5.5.2 Mechanical and Material Testing

The forging supplier shall perform mechanical or material testing of the production forgings as specified in the purchasing document.

5.6 Inspection, Quality Control, Marking, and Documentation

5.6.1 Calibrations Systems

Inspection, measuring and testing equipment used for acceptance shall be identified, inspected, calibrated and adjusted at specific intervals in accordance with ANSI/NCSL Z540.3 and this standard. Calibration standards shall be traceable to the applicable national or international standards agency and shall be no less stringent than the requirements included herein. Inspection, measuring and testing equipment shall be used only within the calibrated range. Calibration intervals shall be established based on repeatability and degree of usage.

5.6.2 Furnace Calibration

5.6.2.1 Forging furnaces shall be calibrated in accordance with the forging suppliers written procedures.

5.6.2.2 Heat treatment furnaces shall be calibrated in accordance with recognized international standards such as API 6A, Annex M or AMS 2750. Records of furnace calibration shall be maintained.

5.6.3 Visual inspection

5.6.3.1 Visual inspection of the production forging shall be performed in accordance with the forging supplier’s procedures for cracks, laps, seams and other anomalies.

5.6.3.2 Results shall be documented and the material shall be dispositioned.

5.6.3.3 Any discontinuities discovered shall be evaluated and the disposition documented.
5.6.4 Nondestructive Examination (NDE)

5.6.4.1 Production forgings shall be capable of meeting the NDE requirements of the applicable API product specification.

5.6.4.2 NDE shall be performed as specified in the purchasing documents.

5.6.5 Dimensional inspection

Dimensional inspection shall be performed on forgings produced to this standard. Each forging shall be inspected. The purchaser shall specify dimensions to be inspected. Acceptance criteria for dimensions shall be as required by the purchaser’s written specification.

5.7 Repair Welding

Repair welding is not permitted on forgings produced to this specification.

5.8 Traceability

5.8.1 Full traceability of forgings shall be maintained with respect to material heat, MPS with revision level and heat treatment loads.

5.8.2 Forging qualification records shall be traceable to the MPS with revision level.

5.8.3 Forgings produced to this specification shall be traceable to the applicable forging qualification record.

5.9 Record retention

The forging supplier shall establish and maintain documented procedures to control all documents and data required by this standard. Records required by this standard shall be maintained for 10 years. Documents and data may be in any type of media (hard copy or electronic) and shall be:

a) maintained to demonstrate conformance to specified requirements;

b) legible;

c) retained and readily retrievable;

d) stored in an environment to prevent damage, deterioration, or loss;

e) available and auditable by the user/purchaser.

5.10 Marking

5.10.1 Each forging shall be marked with the following:

a) forging supplier’s name or mark;

b) part number;

c) material grade;

d) “API Spec 20B”;
e) date of manufacture (month and year);

f) heat and heat treat lot number;

g) traceability number;

h) material sub-group;

i) weight range class;

j) qualification record number;

5.10.2 Procurement drawings shall identify where stamping is appropriate. The above marking listed in 5.10.1 shall be applied using low-stress (dot, vibration, or rounded V) stamps. Conventional sharp V-stamping is acceptable in low-stress areas, such as the outside diameter of flanges, except as limited in the following.

a) For material group 1 and 2, sharp V-stamping is not permitted in high stress areas unless subsequently stress-relieved at 1100°F (590°C) minimum.

b) For material groups 3, 4 and 5, conventional sharp V-stamping in high-stress areas shall not be permitted unless agreed with the purchaser.

5.11 Handling, Storage and Shipping

Forgings shall be packaged for storage or transit in accordance with the written specifications of the forging supplier.
Annex A
(informative)

API Monogram Program

A.1 Scope

The API Monogram Program allows an API Licensee to apply the API Monogram to products. The API Monogram Program delivers significant value to the international oil and gas industry by linking the verification of an organization's quality management system with the demonstrated ability to meet specific product specification requirements. The use of the Monogram on products constitutes a representation and warranty by the Licensee to purchasers of the products that, on the date indicated, the products were produced in accordance with a verified quality management system and in accordance with an API product specification.

When used in conjunction with the requirements of the API License Agreement, API Q1, in its entirety, defines the requirements for those organizations who wish to voluntarily obtain an API license to provide API monogrammed products in accordance with an API product specification.

API Monogram Program licenses are issued only after an on-site audit has verified that the Licensee conforms to the requirements described in API Q1 in total, and the requirements of an API product specification. Customers/users are requested to report to API all problems with API monogrammed products. The effectiveness of the API Monogram Program can be strengthened by customers/users reporting problems encountered with API monogrammed products. A nonconformance may be reported using the API Nonconformance Reporting System available at http://compositelist.api.org/ncr.asp. API solicits information on new product that is found to be nonconforming with API-specified requirements, as well as field failures (or malfunctions), which are judged to be caused by either specification deficiencies or nonconformities with API-specified requirements.

This annex sets forth the API Monogram Program requirements necessary for a supplier to consistently produce products in accordance with API-specified requirements. For information on becoming an API Monogram Licensee, please contact API, Certification Programs, 1220 L Street, NW, Washington, DC 20005 or call 202-962-4791 or by email at certification@api.org.

A.2 References

In addition to the referenced standards listed earlier in this document, this annex references the following standard:

API Specification Q1.

For Licensees under the Monogram Program, the latest version of this document shall be used. The requirements identified therein are mandatory.

A.3 API Monogram Program: Licensee Responsibilities

A.3.1 Maintaining a License to Use the API Monogram

For all organizations desiring to acquire and maintain a license to use the API Monogram, conformance with the following shall be required at all times:

a) the quality management system requirements of API Q1;
b) the API Monogram Program requirements of API Q1, Annex A;

c) the requirements contained in the API product specification(s) for which the organization desires to be licensed;

d) the requirements contained in the API Monogram Program License Agreement.

A.3.2 Monogrammed Product—Conformance with API Q1

When an API-licensed organization is providing an API monogrammed product, conformance with API-specified requirements, described in API Q1, including Annex A, is required.

A.3.3 Application of the API Monogram

Each Licensee shall control the application of the API Monogram in accordance with the following.

a) Each Licensee shall develop and maintain an API Monogram marking procedure that documents the marking/monogramming requirements specified by the API product specification to be used for application of the API Monogram by the Licensee. The marking procedure shall define the location(s) where the Licensee shall apply the API Monogram and require that the Licensee’s license number and date of manufacture be marked on monogrammed products in conjunction with the API Monogram. At a minimum, the date of manufacture shall be two digits representing the month and two digits representing the year (e.g. 05-07 for May 2007) unless otherwise stipulated in the applicable API product specification. Where there are no API product specification marking requirements, the Licensee shall define the location(s) where this information is applied.

b) The API Monogram may be applied at any time appropriate during the production process but shall be removed in accordance with the Licensee’s API Monogram marking procedure if the product is subsequently found to be nonconforming with API-specified requirements. Products that do not conform to API-specified requirements shall not bear the API Monogram.

c) Only an API Licensee may apply the API Monogram and its license number to API monogrammable products. For certain manufacturing processes or types of products, alternative API Monogram marking procedures may be acceptable. The current API requirements for Monogram marking are detailed in the API Policy Document, Monogram Marking Requirements, available on the API Monogram Program website at http://www.api.org/certifications/monogram/.

d) The API Monogram shall be applied at the licensed facility.

e) The authority responsible for applying and removing the API Monogram shall be defined in the Licensee’s API Monogram marking procedure.

A.3.4 Records

Records required by API product specifications shall be retained for a minimum of five years or for the period of time specified within the product specification if greater than five years. Records specified to demonstrate achievement of the effective operation of the quality system shall be maintained for a minimum of five years.

A.3.5 Quality Program Changes

Any proposed change to the Licensee’s quality program to a degree requiring changes to the quality manual shall be submitted to API for acceptance prior to incorporation into the Licensee’s quality program.
A.3.6 Use of the API Monogram in Advertising

Licensee shall not use the API Monogram on letterheads or in any advertising (including company-sponsored web sites) without an express statement of fact describing the scope of Licensee’s authorization (license number). The Licensee should contact API for guidance on the use of the API Monogram other than on products.

A.4 Marking Requirements for Products

A.4.1 General

These marking requirements apply only to those API Licensees wishing to mark their products with the API Monogram.

A.4.2 Product Specification Identification

Manufacturers shall mark forgings with the information identified in 5.10, as a minimum, including “API Spec 20B.”

A.4.3 Units

As a minimum, forgings should be marked with U.S. customary (USC) units. Use of dual units [metric (SI) units and USC units] is acceptable.

A.4.4 License Number

The API Monogram license number shall not be used unless it is marked in conjunction with the API Monogram.

A.5 API Monogram Program: API Responsibilities

The API shall maintain records of reported problems encountered with API monogrammed products. Documented cases of nonconformity with API-specified requirements may be reason for an audit of the Licensee involved (also known as audit for “cause”).

Documented cases of specification deficiencies shall be reported, without reference to Licensees, customers or users, to API Subcommittee 18 (Quality) and to the applicable API Standards Subcommittee for corrective actions.
Bibliography

[6]