Current text

4.5.8.3 An analysis of each heat shall be made by the foundry in accordance with ASTM A703, to determine the percentages of the specified elements. The analysis shall be made from a test sample, preferably taken during the pouring of the ladle. When drillings are used, they shall be taken not less than $\frac{1}{4}$ in. (6.4 mm) beneath the surface. The chemical composition thus determined shall be reported and shall conform to the requirements in the individual specification for the grade being poured.

Purposed text

4.5.8.3 An analysis of each heat shall be made by the foundry in accordance with the nationally or internationally recognized chemical analysis procedure referenced in the applicable material standard, to determine the percentages of the specified elements. If no nationally or internationally recognized procedure is referenced in the applicable material standard, then the manufacturer shall select an appropriate nationally or internationally recognized chemical analysis procedure. The analysis shall be made from a test sample, preferably taken during the pouring of the ladle. When drillings are used, they shall be taken not less than $\frac{1}{4}$ in. (6.4 mm) beneath the surface. The chemical composition thus determined shall be reported and shall conform to the requirements in the individual specification for the grade being poured.

Justification

The point is that ASTM A703 is not applicable for Nickel based materials. In fact, if you go to ASTM A494/A494M para 7.4, ASTM A703 is not mentioned within the applicable. Also, text modified for clarification.

Current Text

Table 8—Production Casting Weld Repair Limitations

<table>
<thead>
<tr>
<th>CSL</th>
<th>% Surface Area</th>
<th>% Wall Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL-1</td>
<td>50 %</td>
<td>75 %</td>
</tr>
<tr>
<td>CSL-2</td>
<td>25 %</td>
<td>65 %</td>
</tr>
<tr>
<td>CSL-3</td>
<td>20 %</td>
<td>50 %</td>
</tr>
</tbody>
</table>

Purposed Text

Table 8—Production Casting Weld Repair Limitations

<table>
<thead>
<tr>
<th>CSL</th>
<th>% Surface Area</th>
<th>% Wall Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL-1</td>
<td>50 %</td>
<td>75 %</td>
</tr>
<tr>
<td>CSL-2</td>
<td>25 %</td>
<td>65 %</td>
</tr>
<tr>
<td>CSL-3</td>
<td>20 %</td>
<td>50 %</td>
</tr>
<tr>
<td>CSL-4</td>
<td>10 %</td>
<td>10 %</td>
</tr>
</tbody>
</table>
Justification

Since CSL-4 requires a sacrificial casting the intent is to validate all processes by means of a sacrificial piece. As such one could argue the requirements for welding should be in line with section 4; foundry qualification.

So, the question is “If 20A allows repair for the qualification casting, should we accept the same level for production casting?”

So, for production castings CSL4 we should add similar welding requirements from table 3 into table 8 during the next addendum.

Current Text

5.7.4 CSL-4

5.7.4.1 Qualification requirements specified for CSL-3 are required for CSL-4.

5.7.4.2 A change in the specific material specification/grade from the qualification casting requires requalification.

5.7.4.3 Requalification is required when, within a Material Group (Table 2), there is a change in the material type where a specified element’s tolerance changes by 15%.

Purposed Text

5.7.4 CSL-4

5.7.4.1 Qualification requirements specified for CSL-3 are required for CSL-4.

5.7.4.2 A change in the specific material specification/grade from the qualification casting requires requalification in accordance with section 4.

5.7.4.3 Requalification in accordance with section 4 is required when, within a Material Group (Table 2), there is a change in the material type where a specified element’s tolerance changes by 15%.

Justification

This ensures if requalification is required, it is performed as per section 4, so a sacrificial piece.